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We compute the dynamical prefactor in the nucleation rate of bubbles or droplets in first-order
phase transitions for the case where both viscous damping and thermal dissipation are significant.
This result, which generalizes previous work on nucleation, may be applied to study the growth
of bubbles or droplets in condensed matter systems as well as in heavy ion collisions and in the

expansion of the early universe.
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When matter in a certain phase is metastable, localized
fluctuations in the state variables may activate the nucle-
ation of bubbles (a term we use below to represent either
bubbles or droplets) of a more stable phase of matter.
If these bubbles have a radius larger than some critical
value, they begin to grow exponentially. The nucleation
and growth of these critical bubbles has historically been
of great interest in the physics of liquid-gas phase transi-
tions and in condensed matter physics [1]. More recently,
they have been studied in the context of first-order phase
transitions in the early universe [2-4] and in high energy
heavy ion collisions [5].

A general kinetic theory of homogeneous nucleation
was developed by Langer [6]. In the neighborhood of a
first-order phase transition, when the critical radii of the
bubbles exceed the correlation length, a reduced descrip-
tion of nucleation in terms of a coarse-grained free energy
is appropriate. Langer and Turski [7] used such a phe-
nomenological approach to show that the nucleation rate
of bubbles could be written as a product of three terms

I= Z%Qo exp(—AF/T). 1)

If the bubbles have a radius smaller than a certain crit-
ical radius R,, they are unstable and will collapse. On
the other hand, if the bubble radius exceeds R,, they
will begin to grow exponentially. The dynamical prefac-
tor k determines the initial exponential rate of growth of
bubbles of radii larger than the critical radius. For the
bubbles to grow beyond the critical radius, latent heat
must be carried away from the surface of the bubble.
This is achieved through thermal dissipation and/or vis-
cous damping. Kawasaki [8] and Turski and Langer [9],
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neglecting viscous damping, show that « for the conden-
sation of a supersaturated vapor is linearly proportional
to the thermal conductivity of the vapor. The statistical
prefactor (g is a measure of the phase space volume of
the saddle point region of the free energy functional and
AF is the change in the free energy required to activate
the formation of a critical bubble.

Recently, the theory of Langer and Turski has been
used by Csernai and Kapusta to study nucleation in rela-
tivistic first-order phase transitions [3]. The baryon den-
sity in the systems studied is negligible. In the absence
of a net conserved charge, the thermal conductivity van-
ishes and the expression of Langer and Turski for the dy-
namical prefactor is no longer applicable. It was shown
in Ref. (3] that, for the systems studied, the latent heat
could be transported from the growing bubble by viscous
damping instead of thermal dissipation; the new expres-
sion for the dynamical prefactor depends linearly on the
shear viscosity of the surrounding medium. The result-
ing expression for the preexponential factor differs sig-
nificantly from earlier estimates where, on dimensional
grounds, the prefactor was taken to be T or T%. Here T
is the temperature and 7. is the critical temperature of
the first-order phase transition.

In this work, we derive a general expression for the dy-
namical prefactor in the nucleation rate of critical sized
bubbles in first-order phase transitions. The results of
Langer and Turski and Csernai and Kapusta are obtained
as extreme limits of our general formula. This formula
may be used to study nucleation in liquids and gases
and in condensed matter systems where both the viscos-
ity and thermal conductivity are significant. It may also
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be used to estimate the probability of formation of su-
perheated quark-gluon droplets or supercooled hadronic
bubbles in the baryon-rich matter produced in high en-
ergy heavy ion collisions [10]. Further applications also
include the expansion of the early universe and the for-
mation of neutron stars.

Consider two phases of matter, phase A and phase B,
where phase A is a metastable state which decays into the
more stable phase B. Phase A, for instance, may be a
supersaturated vapor which when supercooled nucleates
bubbles of a liquid phase B. When the radius R, of the
critical bubble of phase B is greater than the correlation
length £ in phase A, the behavior of the system can be
described in terms of a coarse-grained energy functional
F'. This functional depends on the fluid density n(7), the
local fluid velocity U(7), and the temperature T'(7). Fol-
lowing Ref. [7], we make the ansatz that FF = Fx + F}
where F is the kinetic energy. The interaction term F7y
is the sum of the Helmholtz free energy and the van der
Waals-Cahn-Hilliard gradient energy [11]. The formal-
ism for the coarse-grained free energy functional is also
valid for relativistic systems where the pressure is com-
parable to the energy density and the fluid velocity U (7)
in the local rest frame is small compared to the speed of
light.

In addition to the homogeneous phases A and B, the
free energy is also stationary for a configuration whose
solution is a generalization of the van der Waals soliton.
If the critical radius is much larger than the correlation
length, the stationary solution has a hyperbolic tangent-
like density profile. To determine the expansion of the
bubble about this stationary configuration, we linearize
the hydrodynamic equations around the stationary con-
figuration: n(7) = a(7) + v(7), U(F) = 0 + U(7), and
T(7) = To + 6(F), where the quantities v, U, and 6 cor-
respond to small deviations in the density, velocity, and
temperature, respectively, from their stationary values.
They approach constant values away from the interface.
We derive below a general expression for « which does
not depend on any specific parametrization of the free
energy.

In Ref. [9] relations were derived between the veloc-
ity potential and the density and temperature functions
on either side of a diffuse interface. These relations,
the Kotchine conditions [12], are generalizations of the
well-known Rankine-Hugoniot discontinuity conditions
for shocks. For instance, in the former case, the velocity
of matter diffusing through the interface is a function of
position and falls off away from the interface. In the lat-
ter case, the velocity of the matter is a constant. It was
shown in Ref. [9] that these Kotchine conditions give the
correct dispersion spectrum for capillary waves.

We now use the Kotchine conditions for a spherically
growing bubble to derive an expression for the dynamical
prefactor k. Our derivation is similar to that of Turski
and Langer but differs from theirs in some key aspects.
The Kotchine conditions for a spherical bubble are

dR

[nUR] = [n]gt— 5 (2)

Pl = -2, g
(W] =0, (4)

lﬂ%lﬁfﬂ = —A\(VT)p — (§n+c) Ur (%)R- (5)

In the above, the brackets denote the difference in the
bracketed quantity across the interface. For instance,
[n] = np — ne = An, where the subscripts denote phase
B and phase A, respectively. Also, Ug is the velocity
of matter through the interface, dR/dt is the velocity of
the bubble wall, P is the pressure, and p the chemical
potential. The latent heat per particle is given by [, A is
the thermal conductivity, and n and { are the shear and
bulk viscosities, respectively.

The first Kotchine condition, Eq. (2), is the matter
continuity relation across the interface. The second Kot-
chine condition is the well-known Laplace formula for
the surface tension. The third denotes the continuity of
chemical potentials between the two phases at T,.. The fi-
nal Kotchine condition equates the latent heat produced
per unit area per unit time at the interface to the energy
dissipated per unit area per unit time.

Combining Eq. (2) and Eq. (5), the total energy flux
transported outwards is given by

dR dT 4 dUgr

Here Aw is the difference in the enthalpy densities of
the two phases. From the continuity relation ;v =
. v (ﬁﬁ Rr), one may show [see the discussion preced-
ing Eq. (77) in Ref. [3]] on very general grounds that
the radial dependence of the velocity at the interface
Ugr o« 1/r%. Hence, dU(r)/dr|,=r = —2Ug(r)/R. Sub-
stituting this relation in the above equation, we obtain

dR 4T  _ (4 U3
a_ (e Uk 7
Awg /\dr+2<3"+c) R ™

We wish to obtain a similarly simple expression for
the gradient in the temperature dT'/dr. For the systems
we consider, we may assume that the temperature varies
slowly across the bubble wall. If we represent the tem-
peratures in the two phases by T, and T,, we can de-
fine an average temperature 7' and the variation 6y by
T, =T +6p and T, = T — 6y. In the quasistationary
approximation V28 ~ 0. The solution to the Laplacian
is then [13]

abzoo,vT’SR,

6, =% v, R )
T

where 0 is a constant. Hence,
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To determine 6y, we use the continuity of chemical po-
tentials p, = pp across the interface of the critical bub-
ble (the third Kotchine condition). Then, using the first
law of thermodynamics and assuming a large latent heat
(strong first-order transition), we arrive at the relation

P, P, 160
e m ST (10)
Now from the second Kotchine condition, Eq. (3),
20
P, = —_ 11
b Pa + R ( )

Substituting this equation in Eq. (10), we obtain, after a
little algebra,

ne (20 nylbo
_ e (20 . 12
Fa An(R+ T) (12)

The temperature difference between the two phases, 26,
is due to the dissipation of latent heat. For the critical
bubble, 6, = 0, which implies that

2n,0

°~ AnR,

(13)

Replacing P, in Eq. (12) with the above expression, we
obtain finally for 6y the relation

20T 1 1
- -=. 14
bo= Aur (R,, R) (14)

Substituting this result for 6, in Eq. (9), we have

20T 1 1
=———(=—-=]. 15
R AwR (R,, R) (15)

We have one further unknown—the velocity Ug(r) of
matter diffusing through the surface of the growing bub-

ble. If there exists a net momentum flux through the
interface, then from Laplace’s formula

g
dr

1
AwU: = 20 (% - E) . (16)

We have omitted the shear term in the above equation
since it represents a higher order contribution to the lin-
earized hydrodynamic equations.

Combining our results in Eq. (15) and Eq. (16) with
Eq. (7), we obtain the expression

£ (-3 bres (] o

If R — R, x exp(kt) << R, we obtain finally our result
for the dynamical prefactor when both the viscosity and
the thermal conductivity of the surrounding medium are
significant:

“=ﬁ,§[AT+2(§"+C)] : (18)

In the limit of zero baryon number, A — 0, and we ob-
tain the result of Csernai and Kapusta. If the matter is
baryon rich but viscous damping is negligible, 7,{ — 0,
we obtain the result of Kawasaki, and Turski and Langer.
Indeed, our broader interpretation (compared to Turski
and Langer) of the Kotchine condition in Eq. (5) sug-
gests that the dynamical prefactor in the nucleation rate
of a system undergoing a first-order phase transition is
linearly proportional to the sum of the transport coef-
ficients of the various dissipative processes occurring in
the medium outside the nucleated bubble. The particular
dependence on the transport coefficients is a consequence
of linearized hydrodynamics. However, we should stress
that the Kotchine conditions have a generality which ex-
tends beyond linearized hydrodynamics and may in prin-
ciple be applied to systems where the energy dissipated
is not linear in the transport coefficients. In such situa-
tions, additional physical assumptions may be required.
The Kotchine conditions are necessary but not sufficient
to obtain an expression for the dynamical prefactor.

We should point out that there are several assumptions
that have been made in our derivation of the dynami-
cal prefactor. As discussed above, our result is strictly
valid when nonlinear effects can be ignored and the lin-
earized hydrodynamic equations are applicable. Further,
for the coarse-graining description to hold, the radii of
the bubbles must be larger than the correlation length.
We have also assumed that heating due to dissipation is
slow, causing the temperature to vary slowly across the
bubble wall. Finally, we have assumed in our derivation
that the phase transition is strongly first order, releasing
considerable latent heat.

To summarize, we have derived above an expression for
the dynamical prefactor which governs the initial growth
of critically sized bubbles nucleated in first-order phase
transitions. Our derivation emphasizes the importance
of the generalized conservation laws for diffuse interfaces
and suggests that their validity extends beyond the spe-
cific assumptions discussed above. Our results are ap-
plicable to the wide range of phenomena where both
viscous damping and thermal dissipation effects are im-
portant. In the future [10] we will discuss one such
application—the nucleation of quark-gluon droplets in
baryon-rich hadronic matter created in high energy heavy
ion collisions.
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